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Lie’s technique of computing symmetries of differential equations is applied to a specific case of the
Grad–Shafranov equation. The case considered contains the majority of exact solutions from
literature. The full symmetry group is computed and new group-invariant solutions are obtained
from these symmetries. The basic results and methods behind this technique are given to allow the
reader who is unfamiliar with the subject to use the results given in this paper. Several plots of the
level sets or flux surfaces of the new solutions are given. © 2009 American Institute of Physics.
�doi:10.1063/1.3267211�

I. INTRODUCTION

A symmetry group of a partial differential equation
�PDE� is set of transformations that allow one to generate a
whole family of solutions if a single solution is known. The
transformation acts on both the independent and dependent
variables and, in general, will not preserve the boundary ge-
ometry or boundary data of the original solution.

The Grad–Shafranov �GS� equation is given by

�2u

�r2 +
�2u

�z2 −
1

r

�u

�r
+ r2F + G = 0, �1�

where F and G are functions of u. It can be derived from the
ideal magnetohydrodynamic equations under the assump-
tions of static equilibrium and azimuthal symmetry.1,2 The
dependent variable u is the flux of the poloidal magnetic
field. The function F is proportional to the pressure gradient
dP /du while G measures the axial current density. Equation
�1� is central to nearly all experiments in magnetic confine-
ment physics. The solutions to Eq. �1� can be used to con-
struct the magnetic field and pressure profile for an equilib-
rium plasma configuration with toroidal symmetry. Given a
particular set of functions F�u�, G�u�, the corresponding so-
lution to Eq. �1� provides an equilibrium configuration which
is possible in principle. Any given level set u=const can be
taken as the plasma boundary.

There are presently available very few analytic solutions
to the GS equation; one usually must resort to numerical
analysis. One exception is the case where F and G are con-
stant for all u. Solov’ev,3 Herrnegger,4 and Maschke5 all
found families of analytic solutions with closed flux surfaces.
For these reasons, in this paper we will assume that F and G
are constant. Using any of the four symmetry transformation
subgroups given in this paper, a whole family of solutions
can be obtained from these known solutions. Thus the flux
surfaces can be continuously deformed into new and possi-
bly more interesting or more realistic configurations. In ef-
fect, each solution has been expanded to have more free
parameters. From these solutions, we can also generate new
solutions. In the case where the solution represents poloidal
flux of a plasma, it must be noted that these new solutions
will have a different plasma boundary which is a distortion
of the original.

In addition, the symmetry group can be used to construct
new independent and dependent variables such that Eq. �1� is
transformed into an ordinary differential equation �ODE�. If
the ODE can be solved, a new solution to Eq. �1� is obtained.
Solutions obtained in this way have special group-invariant
properties which will be discussed below. An outline of the
theory and methods used in applying symmetries of PDEs is
given in Sec. II. The symmetry group of Eq. �1� is given in
Sec. III. Special group-invariant solutions to Eq. �1� for sev-
eral of subgroups of the full symmetry group have been com-
puted and are given in Sec. IV.

II. OUTLINE OF METHOD

Let ��r ,z ;u ;�u /�r , . . .� be a differential equation and let
X�U be the space of independent and dependent variables.
Let G be a be a Lie group, � :G� �X�U�→X�U be a
group action, and denote ��g , �r ,z ;u����r̃ , z̃ ; ũ�, where
g�G. G is a symmetry group of the differential equation � if
G maps solutions of � to new solutions under the group
action �. Simply stated, G maps the solution manifold
into itself. If u= f�r ,z� is any solution to Eq. �1� then the
function defined via ũ= ũ�r�r̃ , z̃� ,z�r̃ , z̃� ;u= f�r�r̃ , z̃� ,z�r̃ , z̃���
� f̃�r̃ , z̃� satisfies
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�2ũ
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1
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� r̃
+ r̃2F + G = 0. �2�

As an example, it will be shown below that

�r̃, z̃; ũ� = �re−�/2,ze−�/2;u +
Gr2

2
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4
	 �3�

is a symmetry transformation of Eq. �1� for all �. That is, if
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u�r ,z� is a solution, then ũ�r̃ , z̃� is also a solution. The well-
known Solov’ev solution to Eq. �1� is given by

u = � 1
2 �bR2 + r2�z2 + 1

8 �a − 1��r2 − R2�2� , �4�

where

F = − a, G = − bR2,

and a, b, and R are free parameters. The level sets of this
solution are closed nested surfaces which all circle the curves
r=R and z=0. We make the transformation given above and
get a new one parameter family of solutions. The result is

ũ = 
1

2
�bR2 + r̃2e��z̃2e� +

1

8
�a − 1��r̃2e� − R2�2�

+
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2
log�r̃e�/2��1 − e−�� +

Gr̃2e�

2
�e−� − 1�

+
Fr̃4e2�

8
�1 − e−2�� + �e−�Gr̃2e�

4
,

which has been verified using symbolic software to satisfy
Eq. �2�. The solution has now been extended to have four
free parameters.

Any symmetry transformation can be expanded in a
power series in �,

r̃ = r + ��r�r,z;u� + O��2� , �5�

z̃ = z + ��z�r,z;u� + O��2� , �6�

ũ = u + ��u�r,z;u� + O��2� . �7�

The infinitesimal generator corresponding to this transforma-
tion is given by v=�r�r ,z ;u��� /�r�+�z�r ,z ;u��� /�z�
+�u�r ,z ;u��� /�u�. In transformation �3� we get

r̃ = r −
r

2
� + O��2� ,
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z

2
� + O��2� ,
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Thus we see that the infinitesimal generator is given by

v = −
r

2
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2
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4
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4
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The full transformation group can be given by its infinitesi-
mal generators �v1 ,v2 , . . . ,vn�. That is, any transformation

can be written as g=exp��1v1�exp��2v2� , . . . , exp��nvn�. In
order to make the relationship between a transformation and
its infinitesimal generator explicit, we use the conventional
notation ��� , �r ,z ;u���exp��v��r ,z ;u�= �r̃ , z̃ ; ũ�. One can
also start with a given generator and construct the corre-
sponding transformation group. Given an infinitesimal
generator

v = �r�r,z;u�
�

�r
+ �z�r,z;u�

�

�z
+ �u�r,z;u�

�

�u
,

the corresponding family of transformations is found by
solving the following system of ODEs:

dr̃

d�
��� = �r�r̃���, z̃���; ũ����, r̃�0� = r ,

dz̃

d�
��� = �z�r̃���, z̃���; ũ����, z̃�0� = z ,

dũ

d�
��� = �u�r̃���, z̃���; ũ����, ũ�0� = u .

III. SYMMETRY GROUP

A. Algorithm for generators

There is an algorithm for generating the full set of in-
finitesimal generators for a system of PDEs.6 This algorithm
involves solving an overdetermined system of linear PDEs
and there are many software packages available7 to aid in
this laborious task. The infinitesimal generators in this paper
were found using GEM for Maple.8

The complete set of infinitesimal generators is given by
the span of the following vector fields:

v1 = 2zr
�

�r
+ �z2 − r2�

�

�z

+ �uz −
3

2
Gzr2 log�r� −

7

8
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,
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+ z

�
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+ �2u −

Fr4

4
	 �

�u
,

v3 = r
�

�r
+ z

�

�z
+ �Gr2

2
−

Fr4

2
− Gr2 log�r�	 �

�u
,

v4 =
�

�z
,

v5 = ��r,z�
�

�u
,
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where ��r ,z� satisfies the GS equation for the case F=0 and
G=0 �the homogeneous case�. The span of these vector
fields forms a five-dimensional Lie algebra.

B. Symmetry transformations

The one parameter group Gi corresponding to vi trans-
forms the point �r ,z ;u� to �r̃ , z̃ ; ũ�=exp��vi��r ,z ;u�. The
transformations are found to be

G1:�r̃, z̃; ũ� = � r

�−
,
z − �1�z2 + r2�

�−
;

1
��−
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8
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8
sinh��2�	 ,
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	 ,

G4:�r̃, z̃; ũ� = �r,z + �4;u� ,

G5:�r̃, z̃; ũ� = �r,z;u + �5��r,z�� ,

where �	= �1	z�1�2+r2�1
2. It is worth noting that v1 is a

conformal mapping of the independent variables. The flux
surface configurations corresponding to groups G1 and G2

are displayed in Figs. 1 and 2, respectively.
If u= f�r ,z� is any solution to the GS equation then the

following functions u�i�= f̃ i�r ,z� are also solutions:
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FIG. 1. �Color online� Level sets for Solov’ev solution transformed under the action of G1.
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FIG. 2. �Color online� Level sets for Solov’ev solution transformed under the action of G2.
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u�2� = f�re−�2,ze−�2� −
Fr4e−4�2

8
sinh��2� ,

u�3� = f�re�3/2,ze�3/2� +
Gr2e�3
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u�4� = f�r,z − �4� ,

u�5� = f�r,z� + �5��r,z� .

It is worth emphasizing that these transformations can
also be composed. For example, if f�r ,z� is a solution to
Eq. �1�, then

g�r,z� = f�r,z − �4� + �5��r,z�

is also a solution.

IV. GROUP INVARIANT SOLUTIONS

H-invariant solutions are particular solutions to Eq. �1�
which are invariant under a particular subgroup H�G. These
solutions are constructed by choosing new dependent and
independent variables that are separately invariant under the
subgroup H having dimension s. In general, such a transfor-
mation will reduce the number of dependent variables by the
dimension s.6 Because the GS equation has only two inde-
pendent variables, we can only consider the one parameter
subgroups Hi= �exp���vi�� :��R�. The result is to transform
the GS equation into an ODE �single independent variable�.

We will find this equation to be solvable in closed form; thus
we find a new family of exact analytic solutions to the GS
equation. The vector fields v4 and v5 give only trivial sym-
metries so we omit them from consideration here.

We begin by constructing the solution to the GS equation
invariant under H1. There are two independent functions in-
variant under the vector field v1,

F1�r,z;U� =
r2 + z2

r
,

F2�r,z;U� =
1
�r

U −

r2G

3
+

Fr4

8
+

Gr2

2
log�r�� .

These are easily found by solving v1�Fi�=0, which gives the
first order PDE,

2zr
�Fi

�r
+ �z2 − r2�

�Fi

�z

+ �Uz −
3

2
Gzr2 log�r� −

7

8
Fzr4	 �Fi

�U
= 0.

We choose new independent variables to be y=F1�r ,z� and r
and the new dependent variable to be

v = F2�r,z;U� =
1
�r

U −

r2G

3
+

Fr4

8
+

Gr2

2
log�r�� . �8�

In Eq. �8�, v ultimately depends only on r and z since U is a
function of these variables. Indeed, U will be our H-invariant
solution to Eq. �1�. If we assume that v depends on r and z
only through the variable y �i.e., v�r ,z�=v�y�r ,z���, use the
chain rule to relate derivatives of U to derivatives of v and
substitute these into the GS equation, then we find that the
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FIG. 3. �Color online� Flux surfaces for invariant solution corresponding to
U�1�.
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FIG. 4. �Color online� Flux surfaces for invariant solution corresponding to
U�2�.
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variable r drops out of the equation and we are left with the
following ODE:

y2vyy + 2yvy − 3
4v = 0.

This has the solution

v�y� = c1
�y +

c2

y3/2 .

We can now solve for U in terms of v from Eq. �8� and
resubstitute y= �r2+z2� /r to get the H-invariant solution to
the GS equation corresponding to the subgroup H1. This
gives the following result:

U�1��r,z� =
r

�r2 + z2
c1 + c2
r

r2 + z2�
+

Gr2

3
+

Fr4

8
−

Gr2

2
log�r� .

The invariant solutions corresponding to H2 and H3 may be
computed similarly. The results are

U�2��r,z� = r2
− Gz2

2r2 + c1
z

2r
�1 +

z2

r2

+ c1
1

2
sinh−1�z/r� + c2� −
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8
,

U�3��r,z� = c1 +

c1
z

r

�1 +
z2

r2

+
Gr2

2
�1 + log�r�� −

Fr4

8
.

The solutions U�1�, U�2�, and U�3� have each been verified to
satisfy the GS equation. Level sets corresponding to these
solutions are plotted in Figs. 3–5. Recall that in the case of a
magnetized plasma described above, these surfaces represent
magnetic surfaces.

V. SUMMARY

We have used Lie-symmetry methods6 to uncover all the
transformations of dependent and independent variables that
leave the GS equation, with the conventional assumption that
the pressure and current profiles are linear in the flux, invari-
ant. Thus we have found the complete symmetry group for
this basic equilibrium description. We then used the resulting
symmetries in two ways. First, by applying the transforma-
tions to the known, exact solution due to Solev’ev,3 we have
generated families of new exact solutions, including some
that are quite different in form and structure from the starting
point. Second, we have used an invariant subgroup of the
complete symmetry group to reduce the GS equation to an
ODE. This equation has been found to have an analytic so-
lution, allowing the generation of a family of entirely new
GS equilibria. The outcome from both procedures is a major
extension of the known analytic solutions to the basic equa-
tion of axisymmetric plasma equilibrium.

Although our presentation of the symmetry group is
complete, we have not attempted to explore or categorize the
enormous class of new equilibria that result, being content to
display several examples. It seems likely, however, that equi-
libria generated using the symmetries found here could be
useful in �1� developing analytic models for tokamak fluid
stability and �2� testing numerical simulations of tokamak
equilibrium.
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FIG. 5. �Color online� Flux surfaces for invariant solution corresponding to
U�3�.
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